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Co N ABSTRACT

In this paper, we compute the mean of the equilibrium (steady-state)
total sojourn time distribution for the important class of infinite
capacity acyclic Jackson networks with a single server at each node. In
addition, for those acyclic Jackson networks with a *tree-like! structure,
we derive the Laplace transform of the equilibrium total sojourn time
distribution and then give a simple recursive procedure for computing the

higher moments of the distribution. Such basic results should prove help-
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ful in testing procedures for simulation output analysis of infinite

capacity open networks of queues.
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0. INTRODUCTION

Queueing network models abound in applications, but despite the
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immense practical importance of such models the body of available and
useful results for networks of queues is far from satisfactory; see
Lemoine [9], [10]) for a comprehensive review of available equilibrium
results and weak convergence results for networks of queues. For

studying many queueing network models simulation would appear to be the
only practical recourse at the present time. The regenerative method for
simulation analysis has been applied to the study of passage time problems
in closed networks of queues and finite capacity open networks by Iglehart
and Shedler [4], (5], [6]. The report of Lavenberg [8] discusses applica-
tion of the regenerative method to simulations of closed networks of
queues. However, the regenerative method would appear to be inappropriate
for the large and important body of infinite capacity open netwourk models;
such queueing networks are probably too complicated to return often enough
to some “regenerative condition” from which the entire network starts
afresh probabilistically. Nevertheless, any candidate procedure for simu-
lation analysis of infinite capacity open networks of queues requires a
basic model, and theoretical results for such a model to serve as a test-
ing ground for the procedure. For example, the M/M/1 queue has been

invaluable as a testing around for the development of the various aspects

of the regenerative method. For infinite capacity open networks an
appropriate test moqe1 is the classical Markovian network system of Jackson
[7] with a single serve at each node. And, for infinite capacity open

networks an important characteristic of system performance is the total
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sojourn time (total response time) distribution for typical customers
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in the network. In thic paper, therefore, we compute the mean of the

equilibrium (steady-state) total sojourn time distribution for the

9

important class of infinite capacity acyclic Jackson networks with a

single server at each node. In addition, for those acyclic Jackson net-
works with a "tree-1ike" structure, we derive the Laplace transform of
the equilibrium total spjourn time distribution and then give a simple
recursive procedure for computina the higher moments of the distribution.
Such basic results should prove helpful in testing procedures forlsimu1a-

tion output analysis of infinite capacity open networks of queues.
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1. THE BASIC MOLTL AND STATEMENT OF THE RESULY

The model of interest here is a Markovian network of cueues of the

1 e

% ) type introduced in the classical paper of Jackson {7]1. There are N

nodes with noge {1 havina a single~server, 4 firsi-come-first-served

N T

queue discipline, and a waitina room of un'imited capacity. The external
input stream to node i js Poisson with rate \i . and these external

input streams are assumed to be independent. The service times at node

:
1
i

i are independent and have a common exponential distribution with para-
meter M, ., and are independent of all customer arrivals at node i

A customer leaving node i is immediately and independently routed to
node j with probability Pij and the ﬁustomer departs the system
from rode 1 with probability a, =1 -3 Pij

i=1

The state of the network at time t is taken to be

cte) - (ot eyt o () ™

where ci(t) is the number of customers at node 1 at time t . Given

the independent Poisson external input streams, the exponential service

times at the various nodes, and the independent routing schome, it follows
that {C(t), t > 0! {is a Markov process with stationary transition proba-

bilities. In this paper we are interested in the total sojourn times of
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customers in the network when the process {c(t), t ~ 01 has an equili-

brium (or limiting) distributien. In particular, we are interested in

l the distribution ot total sojourn time under the eguilibrium HMarkov
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queue-lenaths vector process

{C(L), =< t <+ =) . (2)

This equilibrium process (when it exists) will henceforth often be denoted
by C(+) . And, this equilibrium process exists if (and only if) the
“traffic intensity" is less than one at each node in the network. Traffic
intensity in this network setting means the folluwina. Let .# be the

NN matrix of the p..'s and let a = (ay, apy ..oy uN) be the row

ij
vector solution of the “traffic equation"

a = \+a.r (3)

where ) = (X], \2, e XN) . Since customers eventually leave the
system each entry of the matrix L converges to 0 as m -+ » , so that
the matrix I -.»” is invertible and (3) has a unicue solution given 2\

In row form (3) is equivalent to

N
a; = N+ Yopiaas, 0= 1,2,...0,0 . (3a)

This is a balance or conservation equation which says that the equilibrium
rate of flow through node i , ay . is the sum of the external input rate,
N
li » and the total rate of internal transfers to node i , 2: pji“J
j=1

Then, if the "traffic intensity"

SR “i/“i < 1 (4)
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for each 1 , the queue-lengths vector process has a unique equilibrium
distribution = , where vor C = (c]. Cos vuns cN) a N-tuple of non-

negative integers

N
ne) = T vite)) (5)
i=]
C.
with wi(ci) = (1 - pi)oi Y. Thus, when (and only when) the condition (4)
holds for each node in the network, the random vector C(t) , vis a vis
the equilibrium process C(+) , has distribution = for each t in
(- =, +=) . Another way of saying this is the following. Let p denote
the (stationary) transition probability function of the Markov queue-
lengths vector process; that is, if -o<s<t<+» and C and D

are possible states then
P{C(t) = ciC(s)* = p(D,C.t-s) (6)

on the set {C(s) = D' with probability one. Then = is the eauilibrium

distribution if (and orly if)

3 #(0) p(D.Chy) = w(C) (7)
D

for all y in (0,») and all states C

Now, let the random epochs of external customei arrivals in the

equilibrium process C(+) be

o~
oo
~—

(t L

o--(t—<t (()(t 2

2 -1 1
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The points ftn, n=+1,+2, ...} are the superposition of N

independent Poisson processes on (- =, + ») with intensities
X], 12, ceny XN i and the customer arriving at epoch tn enters the

network via node i independently with probability Ai/(\] o4 ..+ )

"2 N

for all n and i . Let

t 4T (9)

denote the random epoch of departure from the network for the customer
arriving at epoch tn , 50 that Tn is the total sojourn time in the
network for customer n . Since the network is in equilibrium the sojourn

times {Tn, n=+1,+2, ...} have a common distribution which we denote

by H . In this paper we show that if the network is acyclic under .#

then the mean of the distribution H , say EIT} , is qiven by

N -1 N 05
E(T} = (Exi) P T (10a)

i=] i=1 i

Moreover, if the acyclic network has a "tree-like" structure then we show
that the Laplace transform, say h , of the equilibrium total sojourn

time distribution H is given by

h(a) = X[(0) - .2) -1 q (10b)

for 3>0, where /(0) is a diagonal matrix whose ith diagonal

entry is (pi - agt e)/(ui - “i) , \ is a row vector whose ith entry

-4 .
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is li/(l] + \2 + o+ RN) ,and q is a column vector whose ith
entry is a; We also give a simple recursive procedure for computing
all the moments of the distribution with transform given by (10b). The
transform result (10b) extends a result of Reich [11] for single-server
Markovian queues in tandem.

These results were derived by a heuristic argument in [9)}. The
argqument given here proceeds in stages, each of which comprises a separate
section of the paper. The discussion in Sections 2 and 3, and the first

part of Section 4 does not require that the network be acyclic. From

thereon, however, acyclic structure plays a crucial role.
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2. THE PROCESS ‘C(t:), - = « t v + =

In this section we observe that the process :C{t-}), -» < t « + =}
15 a Markov process in equilibrium, with equilibrium distribution -
and (stationary) transitizcn probability function p

Le* the process C(t), - =< t < + «: be defined cn the proba-
bility space (2,.#,P) . Without loss cf generality we take C(-) to
have sariple paths which are constant except for isolated jumps, are
right continuous, and have left limits, all with probability one. With
this setup the process C(+) has no fixed points of discontinuity with
probability one, so that P C(t) = C{t-)* = 1 for each t in (- =,+=) .
Hence, in order to establ”sh that the process {C{t-)}, - ®» < t < + «}
has the stated proverties, it suffices to show that for arbitrary

-®<s5 <t ¢+« we have

PC(t-) = CClu-), u<s: = p(C(s~), t - s5,C) ()

for all possible states C with probability one.

Now, given the structure of the sample paths of C(¢) we clearly

have

P{C(t-) = CiC(u-), u < s} =PC(t-) = C;Clu), u<s}

H

with probability one. Let ¢ 1/2m for m=1,2,... . Since

i

C(+) 1is a Markov process

P(C(t—cm) = CiC{u), u<s -¢ 3 = p(C(s- cm), .t -s)
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for all m, with probability one. By Theorem 9.4.8 in Chung {3}

1im P°C{t -sm) = CiC{u), u-s - qm? = PC(t-) = CiClu), u<s:
m-» e )

with probability one. Moreover, we clearly have p(C(s -s:m), C, t-s)

- —= p(C(s-), C, t-s) as m - = , with probability one. The proof

of {11} is complete.
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,g 3. EXTERNAL ARRIVALS AND EXTERNAL DEPARTURES
< \ As in (8) Tet ({t ,n=#1,+2,...} be the random epochs of
external arrivals to the network. Similarly. let
. ' --'<d_2<d_1<0-r‘.d.|<d2<“° 12)
:
'5\.% be the random epochs of external departures from the network. In this
. é section we observe that the random vectors {C{t -), n=+1,+2, ...}
‘3 and fC(dn), n=+5,+2, ...} are identically distributed and have
"g 7 for their common distribution.
i Let {q(C), q(C,D)} denote the transition rates for the process
] 3 ¢(-) . That is, uron enterinu state C , for example, th: process
o remains there for & random time having an exponential distribution with
,“;‘ jt . parameter q(C) , and upon leaving state C the process goes to some
'; . ﬁ state D § C with probability q(C,D)/q(C) . The equilibrium distribu-

tion = satcisfies the "balance equation"

m(C) q(C) = 2, 7(D) q(D,C) (13)
0#C

” for all states C . for 1< i<W Tnt E; denote the N-vector with

all components zero except for a 1 in component i . If C(t)=¢C ,

then the next transition wiil be ejther to state C + Ei(externa] arrival

a2 e

at node i) , to state C - Ei(external departure from node i) , or to
state C - Ei + Ej. for j # i(transfer from node i to node j ) . Thus

for state C




a(C) EqCC*EHZqC C - E,)
i=1

NN

+ X Talc, ¢ - B E)

BINE .
Jti

In addition to satisfyina (13), the distribution = also satisfies

the "partial balance equation"

N N

(C) Z alC.C + €)= ol + £y) alC + Ey.0)
=1 i=1

(14)

for each state C ; c¢f. 191.

Consider the "reversed process” {C{-t)e - >~ t~ * ot L The

veversed process is also @ Markov process in equilibrium with the same

distribution 7 . The transition vates fq’({C), q7(C,m)1 for the

reversed process are given by

n(C) q(c.0) = =(D) q°(0,C) (15)

and

(16)

for all states C and D
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If we now apply (15) to each term on the right side of (14),
divide both sides of (14) by q(C) , and then invoke (16), we obtain

N N
q(CCE) q(CC+E)
n(C)Z - 0T - 1 (17)
q(C) i=1 q (C)
for each possible state C . In the reversed process the transitions

from state C to state C + Ei ,» 1 <1< N, are registered at the epochs
((.d)) +,n=4+1,+2,...] . Note that the sample paths of the

reversed process are left continuous while those of C{+) are right con-
tinuous. Thus, since m is the common distribution of C(¢) and of

the reversed process, and since the state space of (C(tn-), n=+1, +2,...}
and {C((-dn)+) s, n=+1,+2, ...} coincide with the state space of C(-)
and the reversed process, we conclude from (17) that the random vectors
it -Yym=+1,+2, ...} and fCl(-d )+)yn=2+1,+2,...) are
identically distributed and have = for their common distribution. More-
over, since C(+) and the reversed process are equilibrium processes
defined over the time interval (- o, + =) , the vectors {C(d,), n=+1,
2, ...} and {C((-d )+) , n=2%1,+2, ...} are identically distri-
buted.



4, EXIT SETS AND NODES

Let V be a non-empty set of nodes, that is, V is a non-empty
subset of (1, 2, ..., N} . Let V° denote the complement of V in
{0, 1, 2, ..., N} where node 0 denotes the network terminus or sink.

We say that V is an exit set if Prr = 0 for each node r in V and
each node k in V” , where Pro ° 9p for r in V . Equivalentiy,
V is an eait set if upon leaving V there is no path in the network
leading back to V . Note that {1, 2, ..., N} is an exit set.

In the equilibrium process C(+) , let Erk(s,t] be the number of
customers who depart node r and arrive instantaneously at node k over
the time interval (s,t] . If V 1is an exit set then by results of
Beutler and Melamed [1] and Walrand and Varaiya [14] the streams Ejk s
J in VvV and k in V7, are mutually independent Poisson procasses
with respective intensities a5 Py In particular, since {1, 2, ... ,
is an exit set, the external departure streams Eio s V<1 <N, are
mutually independent Poisson processon (- <, + «) with respective intensi-
ties .Gy

From here on, suppose that the network is acyclic under .# . For

node i, 1 <i<N, let V, be the set of all nodes r from which i

is accessible under .# . O0Observe that node i 1is not a member of Vi

and that
Gy 7 A! * Z: @ pr1
V.
i
Let V(i) consist of node 1 togethar with the nodes of Vi . Then

-1 -

N}
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both Vi and v(i) are exit sets for i=1,2, ..., N

Let wi denote the complement of V. in {1, 2, ..., N} . Then
the streams Erk s r in Vi and k in wi , are mutually independent
Poisson processes with respective intensities Qrprk . Thus, since
€C(+) 1is in equilibrium, the set of nodes wi is a Jackson network in

equilibrium with Poisson external input intensities

>‘k = xk * %: s prk
i

el ot It B e Wt ST L e Sk AR 8- =

for k in W, . Also,
G T Mt Py oy
Wi

. for k in w1 . In particular, note that &i =0y 4 SO that if

R TR T T TE (18)

are the random epochs of pooled customer arrivals at node i , external

mm%s.ﬁmw»ﬁmmﬂ;JnMMMaw- [P

+ arrivals plus internal transfers from other nodes, then the points

2%

{t ., n=+1,+2,...) forma Poisson process on (- =, + =) with

ni’
intensity a; - The equilibrium distribution for the Jackson network

w1 , say - , 1s given by

]

|

l .
| |

|
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Pk

. w(c) = ]I (e, )

W;

s where C = (Ck’ k in “i) is a vector of non-negative integers.

’ *

1 Likewise, if W. is the complement of V(i) in {1,2, ..., N},
: *
: then the streams Erj’ r in V(i) and j in Ni , are mutually
li independent Poisson processes with respective intensities arprj
4
i The set of nodes Ni* is thus a Jackson network in eauilibrium with
-3
f Poisson external input intensities
: *
! }‘,j = )\1. +V§: a prj
‘. (i)
i for j in W, , and
1
.
1 * * * .
8 T Ayt 2% Pyt
g . *
.§ for j in Ni . The equilibrium distribution for the Jackson network
2 * *
% wi » 58y m , is given by
:{g_ »
‘. (<) (c.)
3 m = (c.
i - I vjtc,
: . i
’:’ " * a*
3 where C = (Cj’ J in wi ) is a vector of non-negative integers.

For -~ w< t <+ Jet

%
]

c(t)

(ck(t) » k in Ni)

_]3_
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and
c'(t) = (cy(t) , 3 in w;)

~ * ~ *
Note that C(t) = (ci(t) , C(t)) and that if C = (c, C ) then
~ N * * ~
m(C) = v (e)r (C) . Thus, if {t ;. n=41,42, ...} are the points
in the Poisson process of external arrivals to the Jackson network wi .

then by Section 3 we have

P{E(%niu) = (e,C)) = wi(c)w*(c*) (19)

R 2 ~
for all n,c and C . The custumer arrivina at epoch tni enters

wi via node i independently with probability Ni/zi:ik) for all n
ll

-
+
[aN]
-

Thus, the points {tni‘ n=+1 ..} are independently selected

from the points {t =+ 1,4+ 2, ...}, and so from (19) we conclude

niv "7 -
that

Pley(ty) = o C ) =€ = yyledn (C) (20)

for a1} n, i, ¢ and C*

For the customer arriving at node i at epoch tni , let Sni be
the customer's total sojourn time at riode i . Since service times at
node 1 have an exponential distribution, the distribution of Sni is

completely determined by Ci(tni) e Ci(tni') +1 . Thus, it follows

that the sojourn times {Sni’ n=+1,+2, ...1 have a common

-14 -
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exponential distribution with parameter Vi T Hy -y for i=1,2, ..., N
Moreover, by virtue of (29).
.4 *
PIS ;e xa eyt i) =1, C(t .-)=C) =
X
* * * »*
fp{s edylei(t ) = e+ 1, C(t .-) = Cluslc)n (c) =
0
X
* *
S Pt ge arley ) = o tentieh) -
0
\ * *
PISy < % eyt i) = c#lemyC)
where
(u y) ~uiy
0
Hence, summing on ¢ we have that
. * * * *
P{S ;2% C (tni') =C} = P{s, < x}em (C) (21)

*
for all n, 1, C and x
Next, let Ei(s.t] be the total number of departures (external
plus internal network transfers) from node i over the time interval

(s,t1 . Since V(i) is an exit set we know that the stream Ei is a

Poisson process with rate a, . Ne now observe that, conditioned on




© ey

Sni ,» the total flow of customers through node 1 over the random time

. . . . 1
i . Lt +S . 3 .
nterval (tm t Sn1) is also a Poisson process with rate @y

For this it suffuces to show that for anv x > 0 and any non-negative

integer «

(22)

€ y 0'\' Y < X
Now, the left side of (22) equals
{ - _ B
Z p{E‘i\tni’ tn1'+-V] Tk ci(tni) = CISn].de} =
oK

p{Ei(tni' t .+yl =, Snic dx[ci(tn

ni ) = ¢} 'p{ci(tni) = ¢}

> *
coK P{Sm. ¢ dx}

_‘“.y e N -
Gye e ey g ben)

. .ll, -]
5 — PRSRTY vile-1) )
' V. X -
ek vie T dx
(a:y)™ -a.x (o, [x-y] )¢

and this last expression equals the right side of (22).

1

This same phenomenon has been observed by R. L. Disney and co-workers,

civa
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5. THE PROCESS (C(t ; +S . +t), t>0)

In this section we observe that the process (C'(tni + Sni +t),
t > 0} evolves as a Markov process with the same (stationary) transition
* *
probability function, say p , as the process {C (s), - = < s < o} |

*
and with C (t.. + S .) independent of ci(t .+ S

ni ni ni ni) and of S .

For the customer arrivino at node 1 at epoch tni , let Gni he

the node visited by this customer upon departing node i . FEither

éni = 0, in which case the customer exits the system from node i , or
* * *
§,; = for some node j in W, . For j in W, let Ej = (ek ,

k in w;d with e = 1 and e =0 for k# ]
Now let Z*(s) = C*(s-) . We have

) =C ,S . <x} =

Plc.{t . +3
{ AL ni

B *
ni) TR (tni +35

X
ZfP{c (t.+y)=c, Z(t.+y) =C 1z (t..) =D, S_.edy} -
*o itni i ni © Vi * Tni

* * .
P(Z(t ;) =D , S cdyl

Mow (22) implies that, conditioned on Sn1 , node 1 contributes to the
*
Poisson external input stream of the Jackson network wi at rate

uii: pij over the random time interval (t
*

Ni

*
by virture of (21) the sojourn time S,i and the vector Z (tni) are

ni tni + Sni) . Moreover

independent. And, the total stream of arrivals to node i is Poisson




with rate a; . Hence, the integral above is equal to

X
[-q‘y([].yf:*** -v,y
e

* %
p(D.Cyfm(d)ve T dy

Thus,

*
P{Ci(tni * Sni) =c I (tni * Sni) =C, Sni <xb o=
X ‘aiy (“iy)c * * Kk *k & -\)i'y
f e 00w vie Tdy = (23)
o o o

*
where we have applied (7) to the transition function p and the equili-
*
brium distribution = . Letting x + + « in (23) we see that

*
C .. T
ci(tni + Sni) and 17 (tni + Sni) are independent and have joint distri

* * *
bution wi(c) (¢ ) . Summingon ¢ in (22) we find that Z (tni + Sni)
and Sni are independent.
]
We consider next the vector C (tni + Sni) . Now
* *} * x 6 _ }
P{Sni < %, C (tni + Sni) =C1i= P{Sni < X, 1 (tni +Sni) =L, ni - 0
* * *
= C - N . = "}=
+Z*:P{sm.<_x.z(tni+sni) C - B8y =

*

PLSni < x} . Yi(c )

(24)



where

v. () (25)

_.
1]
)
-
¥
3
—
)
»
g
+
M
Y
o
-t
[N
=
*
——
o
*
]
m
A

Now
* % * * K * * %
YR UC-E) = Y T(C-ES) = 3T D) = 1
* *
c* c =o*+ej o*
*
for any i in W, . Moreover,
°1'+E*-°ij =1
W,
i
*
Hence, v is a probability distribution on the states of {C (s), -=<s <+,

and we conclude from (25) that both Sni and Ci(tni + Sni) are independent

)

ni
* ~
We now consider the orocess {C (tni + Sni +t),t>0 . Llet p

* *
R . s
of ¢ (tni + Sni) and that vy, is the distribution of C (tni + S
denote the (stationary) transition probhability function of the process

{C(s), - <s<+® . The epoch of departure t . +S . from node i
is a stopping time for process E(-) . And, the pure jump process C(+)

enjoys the strong Markov property; cf. Breiman {2, pp. 323,328] . Then,

for u, x>0
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- * ~
PIC(t  + S, ;) = (dD), Cle,, +S o+ u) = () =

ni

PLC(t 5 + Spi) = (D))« p((d,D),(c.C) ) =

(26)

Y"(D*) X ko~ * *
;;(6?; 0i(d)7 (D) p((d,d ),(c,C)u}| =

*
Yi(D ) ~ * ~ *
* & P{C(O) = (dio )9 C(U) = (C,C )} ’
7 (D)
where we have invoked (23) and (24), followed by the {ordinary) Markov
property of the process C(*) . Summingon d and on ¢ 1in (26), we

find that

* L * -
P{C (tni + Sni) =D, C (tni + Sni +uy=0¢1 =
(0"
Y.
i) = 0, cfu) = B (27)
m {D)

* * * *
Y'i(D ) *p (D .C au) s

*
using the (ordinary) Markov property of the process {C (s), -w<s§ < + o}
Now suppose u,v,x > 0 . By the conditional independence of the
past and the future given the state of the process C(-) at the stopping

time tni + Sni +u ,cf. [3,p.316] , we have

- 20 -
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P _ * ~ _ _.t -~ - * _
PIC{t o+ S ) = (4D ),C(t . +S . +u)=(c,@), Cle ; +S +u+tb) = (b,B)} -

i i ni

-~

.
PLC(t o+ S ) = (d,0), Clt; + S

s v u) = (6, en((eC) (.8 ) V) =

ni

(28)

a

{~(D*) *
(d,D ), C(u)

—F——  PiC(0)
m (D)

H
"

(.Y - pllc.C), (b8 ) u) =

I I
-+ * P{c(o)
n (D)

(d,D), Clu) = (e.C), Clu + vi = (b,87)}

1]
L]

also making use of (26) and the Markov property of the process C(-)

Summing on d and on ¢ and on b in (28), we find that

, * * & * . * .
PiC (fni + Sni) =0, c(t"i + Sni +ue)=¢C,C (tni +S .y tut vl =81} =
Y-(D*) *
"}(T)")’ Pic*(0) = 0", cF(u) = ¢, ¢Tu+v) =BT = (29)
kit

* * * * * E 3 E 3
v;(0 )} -p (D .C,u)p (C.B W)

Proceeding by induction, we find that, for all 0 = UgS Uy < Uy <L
* *

* *
< um < +o and x > 0 and all states C0 . C] s C2 s e Cm of the

*
process {C (s), - ®m < s < + =} | we have
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T

e

TS ~Npp

B ¥ S

r=20
(30)
m
*
Y1(C ) .Hp (Cr]!C [ u 'ur_])
r=1

*
And, as a consequence of (30), we conclude that {C (tni +St t), t >0}
*
evolves as a Markov process with initial distribution Y4 and stationary

*
transition probability function p

- 22 -
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6. SOJOURN TIMES {Tni' n=+1, +2, ...}

15 In a manner similar to that of (9) of Section 1, let

ni ni

be the epoch of departure from the network for the customer arriving at
node i at epoch tni (external arrival to node i or internal transfer
‘ to node i ) . Since the set of nodes wi(as defined in Section 4) is a

) Jackson network in equilibrium, the sojourn times (Tni‘ n=+1,+2,...}
are identically distributed: let 9; denote the Laplace transform of

their common distribution. In this section we use the strong Markov

[ DL A

property, in conjunction with the developments in Section 5, to derive an
expression for the transform 9, which leads to the results (10a) end
(10b).

Let Yni = Tni - Sni and e1 R 92 >0 . By the conditional
independence of the past and the future of the process {C(t), -= < t < + «}

at the stopping time tni + Sni , we have that

O Ao 1Y, S WMt il e

; ’ -0.S . -8,Y I
17ni_ "2 ni
i Eye e 1 _Jab.
g l [C1(tni+ Sni) C"
* ‘ 1(31)
. -8.5 . 6, .
g A 17n1, 2 . 2'ni
4 - ElE & Ic(tm'+ S i)] Ele |C(tni+ Sm)l 1‘c1(tni Sn1) = ci‘

. .
Since ci(tni + Sni) and C (tni + Sni) are independent

- 23 .




-6,S .
1 ni
e Ici(tni +5

0.5 .
17ni 2 _
Ele lc(tni + sm.)\ = E )

ni

with probability one; and a version of the conditional expectation on

the right side immediately above is5 clearly

c.(t . +S ;) +1

( Ui )'l ni ni
Wy * 9y

The expectation immediately above is

$

-02Yni
E\Ele Ici(tni +S

|- |
ni |

ni

which in turn equals

-6,Y .
e EMiet +s )

qiwi(c) +Z E{E ni ni
N

oty +S,4) = ¢y Sy = j: }

|71t nd

.o N
If the customer is routed to node j in hLi then the customer enters

*
the Jackson network Ni as an external arrival in the sense that

-24 -
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*
z*(tni + Sni) has distribution = and Z*(tni + Sni) » S and

ci(tni + Sni) are all independent of one another. The process
*
{C (1:",i S .t t), t > 0} evolves as a Markov process with stationary
*
transition probability function p , and upon entering the set o7 nodes

*
a customer remains within wi until exiting the system. Moreover,
*

.i

W *
i

the distribution of Ci(tnj) is v, for all n and j in W, , by

virtue of Section 3 applied tc the process C(+)} . We conclude that

-8, Y .
‘ 2 ni
ElEle ley(t; + Sy

-0,T .
o . 2 n‘] = =
pijvi(c) Ele \ci(tnj) c]
‘ 'eﬂT
z'nd
p;: Eye 14 o A
ij (ci(tnj) %1
for all § in Ni Thus,
E‘e e1snie OZYH1 ]| \ ’I =
1€ bai ¥ onid = C\‘
c+l -0 i
u Rt 1 ‘ 2TnJ }
VR b, (c) + p.. E\e 1 |
(u +0 ) ¥ L* I }cl(tnj) ) c‘\
1 w1

Summing on ¢ we find that
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]

3
ki

I

elo 01%ni 0o7ni
l $ (32)
N % c+l
V., W, -0,T .
2
e T e T () e
vi*t8; 3= czo irey) | 1590 ng” 5

for all n=+1,+2, ... and a1l i=1,2, ..., N . Putting 6, =0
and 8, = © in (32) we find that

If the acyclic network also has a “tree-1ike” structire, thep Tn‘ and
*
ci(tnj) are independent for J 1in wi , whence

F_}e nj e (4 ) = ;} = wi(c) gj(e)

7it'ng
Thus, if the network hes a "tree-like" structure, then on putting

B = e] = 92 in (32) we cbtain

gi(e) = 1 * qi *’Z pij gJ(e) (34)
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1. THE SOJOURN TIMES (T , n=+1,+2, ...]

For the external network arrival at epoch tn Tet an be the
node through which the customer enters the network. The sojourn times
{Tn, n=+1,+2,...} are identically distributed, and if h is the
Laplace transform of their common distribution then

N e |
Ay - n .
; h(e) = E Ele 1\5 =1"$
i 1:] l n ‘
! If A, = xi/(x] ¥ Ayt oo+ ay) then PL§ = i) =}, By virtue of

Section 6 we must have

| -
|
é Eie-eT" 14 a) = 1, g.(8)
{ t (Gn'1|‘ i ®i
i
il
.y and so
% .
h N
h(e) =20 3, gy(8) . (35)
i=1

When each transform 9; satisfies (34), it is a straightforward matter

*

A N AT S RS

to solve for h(8) . Begin by rewriting (34) as

4 S

N
[(\)1. + 0)/\)].]9,-(0) = q; +Epij gj(e)
3=

If g(8) is a column vector whose ith entry
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is gi(e) and if “(6) and q are as defined in Section 1, then (34)

is equivalent to

(@(0) -#)g(8) = q . (36)

The matrix 2(6) is clearly invertible for any ® > 0 and so we can

write

2(8) - # = (1 -;f[m(e)]"‘):i(e) . (37)

Each diagonal element of the diagoral matrix [2 (9)1’] is in (0,13,
and so it follows from (37) that (< (8) -+#) is invertible for any
>0 . With X a row vector whose ith entry is ii , we now see that

the right side of (35) is equal to
1) - 217 q

The proof of (10b) is now complete.

Applying Cramer's rule to (36), we see that when (34) holds each
transform 9; is a rational function whose denominator is a polynomial in
8 of degree at most N . Thus, h is the transform of a mixture of

exponential distributions where (34) holds.
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8. THE MOMENTS OF TOTAL SOJOURN TIME

. tet T TZ’ ves TN‘ T be random variables whose distributions

1’
have Laplace transforms 99> 9o -oen Gy h , respectively. Any
customer never visits a node more than once, and under equilibrium con-
ditions each node is a M/M/1 queue in equiliorium. Thus, each of the

s variables Ty, Tp, ..., Ty, T has finite moments of all orders. It

follows from (33) that the residual sojourn time Yni has mean

N
> py;E(T;3 forall n and 1, and so
=l

N
E(TY = /v, +Z1 pyy ET}) (38)
J:

for i=1,2, ..., N . Then

N N NN
3o BT = Do ag/vy +2oa; 2 pyy BT
i=1 =1 i=1 =1
N N N
DITIED DE- LA DAL
i=1 =1 =1

N N
=iz:]ai/v1. + Z} (aj -)\J.)E{Tj] s
- '|=

with the last equality holding by virtue of (3a). Hence,

-29 -
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N i
; A ET) = Doa/y, (39) ,

i=1

Noting that v, = “i(] -pi) » it now follows from (35) and (39) that

Moreover, if v 1is a column vector whose ith entry is 1/\)i , then it
follows from (38) that E{Ti} is the ith entry of the column vector

(1 -1

v for i=1,2, ..., N

When each transform g satisfies (34), it is possible to compute
the higher moments of total sojourn time by a straightforward recursive
procedure. For example, taking the second derivative with respect to ©

of both sides of (34) and then setting 0 = 0 gives

N N
2, 2 2
ETSY = Z pij BT + z(z Dis E{Tj})/vi +2/v,
j=1 51

for 1i=1,2, ..., N, which, in view of (38), is equivalent to
N
2 _ 2
(T2} = 2E(T /v, + 21 pyj ECTS) (41)
J=

-30 -
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for i=1,2, ... N . The same approach used in deriving (39) yields

N N
2. )
;E: Ay BT = 2) o E(T My, (42)
i=1 i=}
Thus, we have
2y i
E{T) = z( > Ai) >, —— E1Y (43)
i=1 i=1 TP

when (34) holds. Also, it follows from (41) that if o 1is a column
vector whose ith entry is 2E{T.}/v; , then E(T7} is the ith entry of
the column vector [I -.?]_]0 for i=1,2, ..., N . This method of
computing E{Ti} s E{Tiz} , for i=1,2, ..., N ,and E{T} , E{TZ}
can clearly be continued to obtain further higher moments when (34) holds.
Methods for computing mean sojourn times in some other queueing

network models are given in [12] and [13]

-3 -



N B e g

I REFERENCES

(1] BEUTLER, F. J. and MELAMED, B. (1977). Decomposition and Customer
Streams of Feedback Queueing Networks in Equilibrium. TYechnical
Report 77-1, Computer, Information and Control Engineering Program.
The University of Michigan.

(21 BREIMAN, L. (1968). Probability. Addison-Wesley, Reading, Mass.

J ?._ [3] CHUNG, K. L. (1974). A Course on Probability Thecry. 2nd Ed. Holden-
: Day, San Francisco.

(4] IGLEHART, D, L. and SHEDLER, G. S. (1978). Regenerative Simulation
of Response Times in Networks of Queues. J. Assoc. Comput. Mach.
25, pp. 449-460.

[5] IGLEHART, D. L. and SHEDLER, G. S. (1978). Simulation of Response
Times in Finite Capacity Open Networks of Queues, Operations Res.
26, pp. 896-914.

{6] IGLEHART, D. L. and SHEDLER, G. S. (1978). Regenerative Simulation
of Response Times in Networks of Queues, II: Multiple Job Types.
I8M Research Report RJ 2256.

{71 JACKSON, J. R, (!957). MNetworks of Waiting Lines. Operations Res.

"i 5, pp. 518-521.

[8] LAVENBERG, S. S. (1978). Regenerative Simulation of Queueing Networks.
IBM Research Report RC 7087.

{9] LEMOINE, A. J. (1977). Networks of Queues - A Survey of Equilibrium
Analysis. Manragement Sci. 24, pp. 464-481.

{101 LEMOINE, A, J. (1978). Networks of Nueues - A Survey of Weak Con-
vergence Results. Management Sci. 24, pp. 1175-1193,

[Y11 REICH, E. (1963). Note on Queues in Tandem. Ann. Math Statist. 34,
pp. 338-341.

[12] REISER, M. and LAVENBERG, S. S. (1978). Mean Value Analysis of
Closed Multichain Gueueina Networks. [IBM Research Report RC 7023.

- {131 SCHASSBERGER, R. (1978). Mean Sojourn Times in Insensitive Generalized
. Semi-Markov Schemes. Technical Report, Department of Mathematics and
Statistics, University of Calgary.

[14] WALRAND, J. and VARAIYA, P. (1978). The Outputs of Jacksonian Networks
Are 2oissonian. Memorandum No. ERL-M78/60, Electronics Research
Laboratory, University of California, Berkeley.

R AT g N v S



R, 2 s L A A L e N ] o < - . IR, e e e e e o

s ;& '
- l "‘"‘ SECURITY CLASMFICATION OF Tri§ PAGE ‘When Data Entersd)
READ INSTRUCTIONS
. RERORT NUMBER T, GGVY ACCESSION RO, BECIPIENT S CATALOG NUMBER
l 4 TITLE (s Subuitiel SLE oF REPORT & PERIOD COVERED
On Tatal Sojourn Time in Acyclic Jackson - ‘
I Networks, Technical Rep tey
3 6. PERFORMING O . REPORT NUMBER
7. AUTHOR ) 8. CONTRACT QR GRANT N MBERr )
;_ ( )0) Austin J.fLemoine @ NgEB14-78-C-071 %
N fvarysmpin——
: T Y RERFORMING ORGANIZATION NAME AND ADDRESS 10 BPROGRAM EL EMENT PROJECT, TASK
AREA &4 WORK UNIT NUMBERS
CONTROL ANALYSIS CORPORATIONw
800 Welch Road NR-047-106

Palo Alto, CA 94304

1L, CONTROLLING OFFICE NAME AND ADDRESS LLZ REPORT DATE
Office of Naval Research <Z/ . !
Operations Research Program, Code 434 - ;
Arlington, Vivginia 22217

MONITORING ASENCY NAME & ADDRESS ¢ Hifletent tram Conrtofling Ottice)

™

SCHEDULE

V6. DISTRIBUTION STATEMENT of thes Report)

Distribution of this document is unl)imited.

17. DISTRIBUTION STATEMENT (of the abstract sntered in Block 20, i ditterant from Report)

18. SUPPLEMENTARY NOTES

19 WEY WORDS (Continue on reverse 3ude 1/ necessary amd rdentffiv by Block number)
Single-Server Queues, Acyclic Jackson Networks, Sojourn Time
Distribution, Infinite Capacity Open Network Models

0. ABSTRACT | Cantinue on reVeras "ﬁ;f'm_{tln' and pdentily By Block number?

\gﬁgstract appears on page i)\}

4 07 \3 y \3 //A\D_/g'.(,-

DD, ansy 1473  EoiTion oF ' NOL €315 CBSOLETE )

SECURITY CLASS. FICATION OF THIS PAGE  Hhen [Mara Enterey

R R T Ty




